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1. INTRODUCTION

Many time series encountered in engineering applications are

strongly periodic -- for example, outdoor temperature, electrical con-

sumption, the roughness of machined surfaces, and machine tool chatter

vibration. This periodic behavior is caused by the dynamics of the

underlying physical system. Engineers are interested in analyzing these

time series in order to characterize, forecast, and control the underly-

ing system. There are several different approaches currently being used

to model this type of time series. However, there is little agreement

in the time series literature on the appropriateness of alternative

models.

The first approach, developed by Box and Jenkins (1970), advocates

the use of a seasonal difference operator and seasonal autoregressive-

moving average parameters. These are then combined with non-seasonal

differencing and non-seasonal autoregressive-moving average parameters,

as appropriate, resulting in a multiplicative autoregressive-

integrated-moving average (ARIMA) model. This approach was used by Jen-

kins (1979) to model outdoor temperature and electrical consumption, by

Kline (1979) to model outdoor temperature and the roughness of machined

surfaces, and by DeVor and Wu (1971) to model surface roughness.

The second approach, known as DDS -- developed by Pandit and Wu,

Pandit (1973), Wu (1977), and Pandit and Wu (1982) -- advocates the use

of models of the form ARNA(n,n-1). This approach was used by Kline
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(1979) to model outdoor temperature and surface roughness, by O'Connor

and Kapoor (1982) to model electrical consumption, and by DeVries (1979)

to model tool chatter vibration in a single point turning operation.

This approach generally resulted in the identification of high order

AlMA models. For example, DeVries found an ARMA(10,9) for a chatter

vibration model, and Kline found an AEHA(8,6) was required to adequately

model temperature.

The third approach consists of modeling periodic time series with a

combined deterministic plus stochastic model. Typically, the deter-

ministic portion is modeled by a sum of relatively few sinusoids and the

stochastic portion by a relatively low order ARMA model. This approach

essentially extends the classical curve fitting approach which assumes

that independently and identically distributed errors (white noise) are

superpositioned on deterministic functions. Anderson (1971) discusses

the problems of statistical inference both under the classical error

assumptions and when the random element satisfies a stochastic differ-

ence equation. This approach was used by Kline (1979) to model tempera-

ture and surface roughness; by Hittle (1981), Hittle and Pedersen (1981)

to model temperature; and by O'Connor and Kapoor to model electrical

consumption.

Kline studied the relative merit, based on the one-step and I-step

ahead forecast error, of Box-Jenkins, DDS, and deterministic plus sto-

chastic models for several periodic time series. In general, he found

that deterministic plus stochastic models provided better forecasts than

either the Box-Jenkins or DDS models. O'Connor and Kapoor found that a
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deterministic plus stochastic model provided better forecasts than the

models identified by DDS for electrical consumption for all forecasts

from one to 24 hours ahead. A similar result was reported by Pandit and

Wu in modeling the classical airline data originally presented by box

and Jenkins. Box and Jenkins concluded that an ARIMA model was adequate

for forecasting the airline data.

DeVries used the DDS approach to model tool chatter in order to

characterize the vibration dynamics for control purposes. He speculates

that the relatively high order ARMA models identified by DDS may be able

to be simplified via pole-zero cancellation. DeVries further notes that

this would be particularly attractive, for simplified on-line control of

turning operations, if an AR(2) were found to be sufficient.

Hittle and Pedersen developed AR4A models via the DDS approach and

deterministic plus stochastic models to forecast outdoor temperature for

use in the calculation of heat conduction through multi-layered building

walls and floors. They note that this calculation is simplified if the

outside surface temperature can be treated as the sum of pure sinusoids.

Hittle and Pedersen conclude that both Fourier analysis and the DDS

modeling procedure allow identification of periodic behavior. However,

they further conclude, adequate AlMA models do not provide good esti-

mates of the amplitude of the principal sinusoidal behavior.

The confusion and ambiguity in today's time series literature

regarding the appropriateness of alternative models makes it difficult

to select a valid modeling approach. Criteria are needed for selecting
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appropriate modeling approaches for this type of strongly periodic time

series. This research represents a first step towards establishing

selection criteria. A fundamental understanding of the similarities and

differences among alternative models will be gained by understanding the

manner in which alternative models account for the variance in periodic

time series. In particular, the objective of this thesis is to identify

mathematically the spectral equivalency, when it exists, between a

deterministic and a stochastic representation of a periodic component in

a time series. Since the spectrum represents the frequency decomposi-

tion of the variance of the time series, this provides a criterion for

selecting an appropriate model.

In order to establish this spectral equivalency, the spectrum for a

discrete deterministic time series, consisting of a sinusoid plus white

noise, is derived in Chapter 2. The spectrum for a second order

Autoregressive-second order Moving Average, ARMA(2,2), stochastic model

is derived in Chapter 3. Equivalency between deterministic and stochas-

tic models is defined in Chapter 4 based on the frequency decomposition

of the variance of the time series. A procedure for identifying an

equivalent stochastic model for a given deterministic model is also

presented. The identification procedure is illustrated with a numerical

example in Chapter 5.
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2. DETERMINISTIC SPECTRUM

Spectrum of a Sinusoid

Consider a periodic time series {xt}= 1 that consists of a single

sinusoid plus white noise.

Xt = d t + a t  (Eq. 2-1)

where

d = A cos (wt + w )t 0

and

a is an independently and identically distributed random
t

2
variable with mean 0 and variance a; i.e.,

a is ild (O,c2)t a

and

a and d are independent.t t

The spectral density function, or more commonly the spectrum of

{xt}, will be denoted by fx(e) and is defined by the discrete Fourier

transform, Jenkins & Watts (1968):
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f (0) N - t e 20 < O < i (Eq. 2-2)x t=1

Substituting x = dt + at yields

iiN et N et2

fx() NI N t e + Ia t ef (Eq. 2-3)
x TNt=l tt=l I

Since the complex absolute value squared of a complex number is the

product of the complex number and its conjugate, Churchill (1974),

expansion yields

1 eiotEd e-iet + Ed elot Ea e- iet
x = N t t t t

eet -iet let E -iet(2ae~ dte + 7ate Late ) (Eq. 2-4)
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But

N it N -ik iO(t-k)
de I a ke E - Zd ake

t=i  t k-I t k t

i02.
= Z (E dt  at-d e 

__

z t a;

where Z - t-k

=0 (Eq. 2-5)

Since E(da) E(d) E(a) 0 which implies Eda = 0

t t t t Ct

Similarly

iot -lOt
Ea e iEdte fi= 0 (Eq. 2-6)

t t

Hence Eq. 2-4 can be written as

N 12 N 2( q , 2 7

I=M dteiOt + N a ifx(O t I1 u

That is, the spectrum of the sum is the sum of the spectra when series

are independent.

The spectrum of {dt} can be shown (Appendix A) to be
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si N(NO) [in ! N Ow sin N(w-0)
A 2  sin2 o[Nl +0 o  y@ sn

2 2 2
fo)  - sin 2 + sin 2 sn2

sin2 N(w--O)

+ (Eq. 2-8)
sin 2 w-2O

Since the spectrum for a finite discrete series is only defined at

discrete points, it is understood that L - 2 0,1,2,
N 2

The spectrum can be evaluated at e w by applying £'Hopital's rule

to evaluate the indeterminate factor as follows:

N sin N(w-0)
sin N(w-O) 2

lim 2 lim N W-6

Orn sin 2 _ r-2
2 (-

sin 22

=N (Eq. 2-9)

Therefore, from Eq. 2-8 and Eq. 2-9, we get

A2 2
t (') = - In + 2 cosj(N+l)d + 2w NsinNw + N (Eq. 2-10)

d 4iN L 2 0 S"11 w
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If N is chosen such that it is an integer multiple of the periodicity,

2irk
i.e., if w = - where k is a non-zero integer, then sin Nw = 0 and

N

Eq. 2-10 reduces to

f A(W) A N (Eq. 2-11)
d27 2 7

For 0 w i.e.8 2 w- = -- and j 0 kN ' N

sin (w) = sin(k+j)Tr = 0 (Eq. 2-12)2

and

sin N(w-O) = sin(k-j)7 = 0 (Eq. 2-13)2

Therefore, in this case Eq. 2-8 reduces to

fd(6) = 0 0 # W (Eq. 2-14)

Spectrum of White Noise

The spectrum of {at} can be shown (Appendix B) to be
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f (e) a (Eq. 2-15)
a

Spectrum of a Deterministic Model

Thus the spectrum of {xt}, denoted by fx(e), where

x= A cos (- - t + Wo) + at  is (Eq. 2-16)

2

A 2  N 2A2  . + + a j =k

2 2'R T

f2rj (Eq. 2-17)

x N
2

_a j k

N
for I=0, 1, '2

This spectrum is shown graphically in Figure 2-1.

The spectrum represents the frequency decomposition of the variance

of txt}. This can be seen by integrating the spectrum via the rectangu-

lar rule to show that the area is equal to the variance of {xt}.
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o.2

A2  N

f(O).
fx

0

Figure 2-1. Spectrum of A cos(wt + wo) + at
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A2  N 2T +a 2Tr N
Var(xt)= 2 2 N + T N 2

A 2
2 + a (Eq. 2-18)

That is, the variance of xt is the sum of the variance of dt and at

since dt and at are independent.

20a
Note that Eq. 2-17 can be normalized by dividing by - (iff

it
2

a a 0.)

~2 2

2aa

a j #k

for j = 0, 1, . 2
2

In summary, we have shown in this chapter that the spectrum for a

sinusoid plus white noise is equal to the sum of the spectrum for a

sinusold and the spectrum for white noise. The spectrum for a discrete

sinusoid plus white noise will be used in Chapter 4 to establish

equivalency between deterministic and stochastic models.
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3. STOCHASTIC SPECTRUM

Stochastic Model

We now consider stochastic models of the form

at = a (a
Yt '(B) B)a (Eq. 3-1)

where e(B) and (B) represent polynomials in B, the back shift operator,

2
which is defined such that Bxt - xt.l, and at is an idd (O,o ) random

a

variable. Specifically, we will consider ARMA(2,2) models since two

degrees of freedom are required to allow the roots of the polynomial

equations associated with O(B) and *(B) to be complex.

This model is written mathematically as

(1-0 B-0 2B 2)Y (~B_22 a (Eq. 3-2)

which means

Yt lYt-l + 2t-2 + a 1 - 02 at-2 (Eq. 3-3)
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Spectrum of a Stochastic Model

The spectrum, denoted by fy(0), of the output, Yt, of a linear

filter, t(B), is related to the spectrum, fa(O), of the input, at, as

follows, Anderson (1971):

f (0) = 10(e-)I2 f (a) (Eq. 3-4)

2
a

Since the input, at, is white noise, fa() -. Thus,

2 12

f (0) = - )I (Eq. 3-5)

That is, the spectrum of {yt} is equal to the variance of at

divided by iT times the complex absolute value squared of the transfer

function O(B) evaluated at B - eiO.

Now,

Se(B)
) (B)

(1-81B-02B 2)

2i_ 2 (Eq. 3-6)

can be written as

(1-vB)(l-vB)4'(R) = (I-\,B) (1-XB) (Eq. 3-7)



15

where it is assumed that the roots of the associated polynomial equa-

tions of e(B) and #(B) are the complex conjugates v, Z and x, T, respec-

tively. The complex numbers v and v will be called the zeros, and A and

j will be called the poles of the ARIA(2,2) model. The zeros and poles

are assumed to be complex conjugate pairs in order to allow them to be

near eiO, which will be shown in Chapter 4 to be necessary for spectral

equivalence.

Therefore,

2

e = I (l-e-ie (1-ie' 0 )1 2 *(Eq. 3-8)

If we multiply each factor in the numerator and denominator of

Eq. 3-8 by e12e we get

ie - ie - 2
l(e x(e ) 2 

(Eq. 3-9)

which can be rewritten, Churchill (1974), as

A 2. [s 1 . J4: _ 1 2
1(e)2 e- J (Eq. 3-10)

Lle T T)
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Figure 3-1 graphically illustrates Eq. 3-10 in the complex plane. Since

j eiO-vj is the distance between •t0 and v, and leie-I is the distance

between ei0 and X, the first term is equal to the ratio of these two

lengths squared. Similarly, IeiO- V and e.-i represent the distance

between eie and - and 3, respectively. Hence the second term is equal

to the ratio of these two lengths squared.

If we define v and such that in polar form

- se , -- se (Eq. 3-11)

and X and T such that

= re ip , f= re- i  (Eq. 3-12)

then bP(e-i0)1 2 , Eq. 3-8, can also be represented conveniently as

S(e-ie0)12 (1-se-1(6-0 )(l-se- (6+0) )1
S(I-re - i ( 0 - 0 ))(l-re- i(+P)) 12

(1-2s cos(-)+s 2 ) . (1-2s cos(+a)+s 2 )  (Eq. 3-0)

(1-2r cos(8-p)+r 2) (1-2r cos(O-P)+r 2 )

The two factors in Eq. 3-10 and Eq. 3-13 can be seen to be equal by

considering eie-vI as shown in Figure 3-2. Application of the Cosine

formula for two sides and the included angle yields immediately:

I I ' I -I II -
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ITMAG

ee,9

Figure 3-1. Graphical Interpretation of b (ei6 12
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r MAS

Figure 3-2. Trigonometric Development of IeiO-vI
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lei- V2 = + S2 - 2s cos(O-a) (Eq. 3-14)

Similar application of the Cosine formula to the three other dis-

tances completes the demonstration.

In this chapter we have defined the spectrum and developed a graph-

ical interpretation of the poles and zeros for a stochastic model. This

interpretation will be used in Chapter 4 to identify equivalent deter-

ministic and stochastic models.
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4. EQUIVALENT DETERMINISTIC AND STOCHASTIC MODELS

Definition of Equivalence

Equivalence between the deterministic and stochastic models will be

established via their spectral representations. The spectrum of the

stochastic model will be equated to the spectrum of the deterministic

model in the sense that they both represent the same frequency decompo-

sition of variance. Since the area under the spectrum represents vari-

ance, equivalence is established by equating the area under each spec-

trum.

The area under the deterministic spectrum is found via the rec-

tangular rule for integration. This is due to the nature of the

discrete Fourier transform that was used to derive the deterministic

spectrum. Brigham (1974) presents a nice graphical development of the

discrete Fourier transform for sampled data. The rectangular area

around any specific discrete frequency, say 0*, represents the variance

of x that is contained in the frequency interval 0* - 1 to e* + -1.
t N N

That is,

Var(xt),_ 27T f (8*) (Eq. 4-1)
t N x

-N

It is important to note, according to sampling theory, Kuo (1977), that

a discrete time series can only contain information about the total

N 2variance in each of the - frequency intervals of length - Thus the
2 N
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spectrum of the discrete deterministic model represents the total vart-

ance in each interval but contains no information on how the variance is

distributed within each frequency interval.

The spectrum for a stochastic model, however, is continuous.

Therefore, the value of the spectrum, fy(E*), at the frequency 0*

represents the variance of yt at 0*. The total variance in any interval

is found by integrating fy(e) over the interval. Thus,

Var(v ) + = f ()d (Eq. 4-2)

In order to directly compare the spectral representation of a sto-

chastic model to the discrete spectrum of a deterministic model, we will

define the equivalent discrete stochastic spectrum, denoted by fy(a), as

follows:

0 + 7F
f*(0) = N f (O)dO (Eq. 4-3)

0---71

N

where it is understood that 0 J 2J 0,1,2 . N

N 2

In summary, the deterministic and stochastic models are equivalent

when the frequency decomposition of the variance is the same for both

2 2irj N
models. That is, when fx(0) f (0) 0 -- j - 0,1,2..., NNNf 2
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Care must be taken for non-normal processes since the uniqueness

implied above is only guaranteed for second order stationary normal

processes, Jenkins and Watts (1968) and Chattfield (1975).

Procedure for Identifying Equivalent Models

Model equivalence requires interval by interval equality for each

of the -N intervals; therefore, model equivalence also implies equality
2

of the total variance over the entire frequency range from 0 to w. The

equality of the total variance is a necessary, but not sufficient, con-

dition for model equivalence. However, it can be used as a gross check

on model equivalency.

Two concepts will now be introduced to provide a practical pro-

cedure for identifying an equivalent stochastic model for a given deter-

ministic model.

The first concept relies on the geometric interpretation of the

stochastic spectrum introduced in Chapter 3 and the normalized deter-

ministic spectrum from Chapter 2.

A pair of complex conjugate poles (A, X) and zeros (v, v) are shown

in the unit circle on the complex plane in Figure 4-1. A g raphical

interpretation of fy(0) which was demonstrated in Chapter 3 (Eq. 3-5 and

3-10) to be a function of

__L__4
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-102= 2 jet()-xi L{oe- Vi (Eq. 4-4)

is shown for e - 8* and O - w.

It can be seen if A and v are close to the boundary of the unit

circle, and near eiW, with v farther from eiw than A is from eiw, that

when 8 - 8*

le - le -- Al (Eq. 4-5)

and

lei8* - le - XI (Eq. 4-6)

hence, from Eqs. 4-4, 4-5, and 4-6

i (-i°O*)2 2 2 (Eq. 4-7)

When w

I e - V" > lei - A (Eq. 4-8)

and

leiW - V1 z leiW - X- (Eq. 4-9)

hence, from Eqs. 4-4, 4-8, and 4-9

ItP(eiw)I 2I eWv] (Eq. 4-10)
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Thus, under these assumptions, the stochastic spectrum

2 2
f (6) -g(e - i8 )  (Eq. 4-11)

Y T

2
a

is approximately equal to a for w , w and approximately equal to
7t

2
0a 8ei0-v 2 for 0 = w.
Tr leie- X 12

The most critical case in the above approximation occurs when 0* is

near w. We want leiw -vI much larger than leiw -xI and, simultaneously,

IeiO* -vi approximately equal toleie* -X I. This means that eiw -vI

must be much smaller than lei e* - eiwI for 0* near w. Since

fy (w-3 )f Nt fy(8)d0 (Eq. 4-12)
y N wo-3T

N

and

2w 3

fy (w + 2.)N N fy(e)de (Eq. 4-13)

N

the most critical value for 0* is when 0* w w+ I. Hence, we want
-N

leiw - v < < iei(w±n/N) - eiwI " 2 sin -(E. 4-14)

2N(q -4
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The spectrum of a deterministic sinusoid plus white noise, i.e.,

x =A cos(wt+w)+a (Eq. 4-15)
t 0 t (q -5

where

a is iid(O, 2)
t 'a

at and dt are independent

was shown in Chapter 2, Eq. 2-17, to be

2 a 2
A .N+aW
2 2T I

f (0)= (Eq. 4-16)
x

2
aa W

'Jr

Figure 4-1 has shown that for suitably chosen A and v that

2- k-i 2,

y (Eq. 4-17)2
a
-K 0 #w

Thus the two spectra represent the same general decomposition of vari-

ance.
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The second concept for identifying the specific form of the sto-

chastic spectrum takes advantage of the general form of fy (0) and the

equality of total variance over the entire spectra.

If the total area under each spectrum is equal and the spectra are

equal everywhere except for 0 - w, then the area in the interval around

w must be equal. That is, if

a2 12 Tr
+- " j 2-- +  " +'a fy(7T+ ? 1) = f (0) dO (Eq. 4-18)

A2  
2T N r N

0

A2 + a 2  fy() dO (Eq. 4-19)

0

and

f (6) = f (6) e W (Eq. 4-20)x y

then

2+- f f (8) dO (Eq. 4-21)

N
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The identification procedure, therefore, consists of, 1) choosing X

and v such that fy (e) has the general form of Eq. 4-17 wvth

-- + a and, 2) comparing f (6) to j f (0) for 0= Njo2 a y N x N

N
j - 0,1,2,..., .2

Before discussing specific procedures for finding A and v a method

for evaluating thef fy(e)de utilizing Green's function will be

presented. This will eliminate the need to do some integrations in the

identification procedure.

Green's function, also called *-weights by Box-Jenkins (1970),

represents an orthogonal decomposition of a time series by expressing

the time series as a linear combination of independent random variables.

That is, for

6(B)
yt - B at =  (B)at (Eq. 4-22)

Green's function, denoted by Gj, is defined such that

y Ga (Eq. 4-23)h~O . t-j

Since the at's are mutually independent, identically distributed

random variables, Eq. 4-23 implies, Hogg & Craig (1978):
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2 2 0 2
a 0 GJ (Eq. 4-24)

where c 2 is the total variance of the output of the linear process,

2
p(B), when driven by white noise of variance a . In other words,

0 Y (Eq. 4-25)

0

It can be shown, Appendix C, for an ARKA(2,2) model with complex

poles and zeros, that

2O 2 22
G2 = 1 + R r cos(2(p-6)) - 2r co 1 (Eq. 4-26)

R2r2  cos<<-B> ___]

j=0 - Ll4+r4 
- 2r cos 2p ir2]

where r I XI

P - Arg (X)

ft - Y + B2

€1o2

B - 201 -

401 + 40 2)
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tan- 1 B B]

2

The spectral equivalence of deterministic and stochastic models has

been developed in this chapter. A procedure to identify an equivalent

stochastic model for a given deterministic model also has been

presented. This procedure utilizes the graphical interpretation of the

stochastic spectrum presented in Chapter 3 and the analytic expression

for G 2 derived in Appendix C. The identification procedure will be

j-oGJ

illustrated in the next chapter.
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5. EXAMPLE OF THE IDENTIFICATION OF EQUIVALENT MODELS

General Discussion

The following example illustrates the specifics of the procedure

for identifying an equivalent stochastic model for a given deterministic

model. The deterministic model is "given" in the sense that Fourier

analysis of {xt} has been used to identify the deterministic model. The

converse problem -- given a stochastic model: find the equivalent

deterministic model -- is solved by a straightforward (actually simpler)

application of the principles illustrated in this example.

Given

xt = dt + at  t = 1, 2, . , N (Eq. 5-1)

where

d =A cos(t + w )t 0

a is an lid (0,a ) random variable
t a

and

d and at are independent

Find(1-0 

- B

Yt B at (Eq. 5-2)

such that {xt}, {y } have the same second order properties
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While the choice of A and v is restricted to be near ei' and inside

the unit circle, this still leaves an infinity from which to choose.

However, the "best" placement for both X and v is such that their argu-

ments are both equal to w.

Define X and v such that in polar form

r= r i p  (Eq. 5-3)

icy
V s e (Eq. 5-4)

and let

p =a = W (Eq. 5-5)

This placement is "best" in the sense that the spectrum evaluated

at the discrete frequency before and after w will be approximately

equal. That is,

21IT f*w.27)f*(w f N W ) (Eq. 5-6)

This means that both of these values can simultaneously be made arbi-

202
trarily close to a. Recs l, Eq. 4-17, that

N

a2 i ]2

SFie (q. 5-7)fy(- 7T Le iwxlj
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Thus, f y(w) is dominated by the ratio of the distance between eiO and v

and the distance between eiW and X. This is also true for the spectrum

near w. Hence,

* T _2 ) 22 a (Eq. 5-8)*(W -- f *(W +- ay N y N

requires that

j'(wW/N)- VI z(Eq. 5-9)

le' - I

This condition will be satisfied when

leiW - vI and le - Al < < lei(w±tn/N)-e i 1 2 sin
2N (Eq. 5-10)

The above condition is satisfied when both X and v are much closer

to eiw than to ei(w + t/N). When p - a - w, both A and v are equally

far from ei(w - "/N) and ei(w + t/N), respectively, and the ratio of the

distances can be made arbitrarily close to one. This idea is illus-

trated in Figure 5-1. The distance between eiw and ei(w + t/N) has been

greatly exaggerated to illustrate the concept of relative

"nearness"/"farness." As can be seen in Figure 5-1,
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IMAG

e iN w--)

01REAL

0

Figure 5-1. Graphical Interpretation of If(et(w+J/N))12 =
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I 1 (Eq. 5-11)

lIei(WTr _)~

even though

iSe=1- > >(Eq. 5-12)
le 1 xj l r

Thus, placement of A and v on the same radian as w with r > s

results in a stochastic spectrum of the same general form as the deter-

ministic spectrum.

To find specific values for X and v, given p - a - w, we will

assign r arbitrarily close to one and calculate the corresponding value

of s such that

1 2 2f (0) dO fi - + a (Eq. 5-13)

0

via

G2 (Eq. 5-14)

j=0 J
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Numerical Example

The identification procedure will now be illustrated with a numeri-

cal example. Assume that Fourier analysis has been used to identify the

following sinusoidal plus white noise model; this example is adapted

from O'Connor and Kapoor (1982).

Given:

A = 8.643

2Tr
24

2 8.460 (Eq. 5-15)
a

N 240

The deterministic spectrum is

2
A N a 2
2 " 2T + 1,429.4 0 =

f (0) = (Eq. 5-16)X 2

n 2.693 0 #

for 2 j = 0, 1, . ,120
240

and G2 A 2 2and.... + (7 = 45.811
x 2 a

Therefore the frequency decomposition of the variance of xt, obtained by

integrating fx(e) via the rectangular rule, is
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A 2  2a 2

220 {a 37.421 6 w
Var(xt) - f f (e) (Eq. 5-17)

t 2a

N N .0705 e w

27T
Let = .999 e T (Eq. 5-18)

27r
and calculate v f s ei 24 such that

2 2 2 2
a = - +a = 45.811 (Eq. 5-19)

i.e. 2 10

I- G + 1 = 5.415 (Eq. 5-20)

a

An iterative solution of Eq. 4-26 gives a - .9308 when I - 5.415.

Thus

2rr 2ir

- 0.999 e 24 V - 0.9308 ei 24 (Eq. 5-21)

and therefore

X +  - 1.9299 61 . v + v- 1.7982

02 - -X- - -0.9980 82 a -v - -0.8664 (Eq. 5-22)

a 2 . o2 G 2 45.811
y a j 0
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Comparing

leiw - vi = 1 - s = .069 (Eq. 5-23)

to

lei(w +- i/N) -eiw 2 sin 2Nff .013 (Eq. 5-24)

2N

shows that v is not much closer to eiw than the distance between eiw and

ei(w + T/N). The effect of this can be seen in Table 1, which shows a

portion of f y(0) and the N f (e)de. The variance of yt around
-- Z

N
* 2

W, f (w), is 36.661 vs 27 f x (w) - 37.421. Also the variance of yt in
Y N

the intervals on either side of w is large compared to the desired

21 fx (w + 27/N) = .0705 while the variance at high frequencies is low.
N

2
The deterministic model has a total variance, o 45.811, distributedx

such that the variance of xt at w is 37.421 and the remaining variance

of 8.390 is distributed evenly at the remaining frequencies. This sto-

chastic model results in a total variance, 2 - 45.811, but the variancey

of yt at w is 36.661, which is 80.0% of the total variance versus the

desired 81.7%. Also the variance of Yt at w + 2 is about .68, or
--N

almost 10 times the desired variance. Therefore, this stochastic model

is not exactly equivalent to the given deterministic model.

We can improve the approximation by moving both X and v closer to

tXnthe unit circle. When - .99999 e 24, we find V - .9933 e 24. Hence
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Table 5-1. Stochastic Spectrum: r=.999, a-.9302

Sf f(e) ffy(e)dO
- N _ _

0 0.000 2.704 .0354
1 .026 2.715 .0711

2 .052 2.750 .0720
3 .079 2.818 .0738
4 .105 2.935 .0769
5 .131 3.143 .0825
6 .157 3.537 .0931
7 .183 4.400 .1167
8 .209 6.880 .1879
9 .236 20.271 .6857

10 .262 12240.423 36.6606
11 .288 20.197 .6836
12 .314 6.829 .1866
13 .340 4.350 .1154
14 .367 3.481 .0916
15 .393 3.078 .0808
16 .419 2.859 .0749
17 .445 2.726 .0714
18 .471 2.639 .0691
19 .497 2.579 .0675
20 .524 2.536 .0664
21 .550 2.504 .0656
22 .576 2.480 .0649
23 .602 2.461 .0644
24 .628 2.445 .0640
25 .654 2.433 .0637
26 .681 2.422 .0634
27 .707 2.414 .0632
28 .733 2.406 .0630
29 .759 2.400 .0628
30 .785 2.395 .0627

* . a 0

A . A

119 3.115 2.344 .0614
120 3.142 2.344 .0307
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4i = 1.93183

2 - -0.99998

01 = 1.91895 (Eq. 5-25)

02 = -0.98669

2
= 45.811

In this case v is close to eiO, .007, compared to the distance

between eiw and ei(w ± 7/N), .013. Table 2 also shows that the distri-

bution of the variance of yt is very close to the desired variance dis-

tribution of x t. The variance of yt at w, 37.515, is 81.9% of the total

variance versus the desired variance of 37.421 or 81.7%, and the

remainder of the variance is quite evenly distributed.

A stochastic model which represents the same frequency decomposi-

tion of variance, to any arbitrary approximation, can be found for any

real valued sinusoid plus white noise. The required degree of approxi-

mation depends on the application.

The identification of an equivalent, or approximately equivalent,

deterministic model for a given stochastic model relies on the same

principles illustrated in the above example. The "goodness" of the

approximation is evaluated by considering the frequency decomposition of

variance.

For example, suppose we have identified as the best stochastic

model for a given time series the ARMA(2,2) whose spectrum is shown in

Table 1. The concentration of the variance of yt in the interval

. . . . ... . ... . ... .
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Table 5-2. Stochastic Spectrum: r-.99999, s-.9933

j 21 f (e) (f (e)d6
N y

0 0.000 2.661 .0348
1 .026 2.661 .0697
2 .052 2.661 .0697

3 .079 2.662 .0697
4 .105 2.663 .0697
5 .131 2.665 .0698
6 .157 2.669 .0699
7 .183 2.677 .0701
8 .209 2.701 .0708
9 .236 2.832 .0757
10 .262 1192486.736 37.5145
11 .288 2.832 .0756
12 .314 2.701 .0708
13 .340 2.677 .0701
14 .367 2.668 .0699
15 .393 2.664 .0698
16 .419 2.662 .0697
17 .445 2.661 .0697
18 .471 2.660 .0696
19 .497 2.659 .0696
20 .524 2.659 .0696
21 .550 2.659 .0696
22 .576 2.659 .0696
23 .602 2.658 .0696
24 .628 2.658 .0696
25 .654 2.658 .0696
26 .681 2.658 .0696
27 .707 2.658 .0696
28 .733 2.658 .0696
29 .759 2.658 .0696
30 .785 2.658 .06)6

119 3.115 2.657 .0696

120 3.142 2.657 .0348
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(2- - , 2_, + -) suggests the presence of a sinusoid whose period

24 240 24 240

is 24. A hypothesis test of the "goodness" of modeling this time series

as a sinusoid plus white noise can be based on the difference in the sum

of the squared errors explained by the stochastic and deterministic

models and the degree to which the residual series of the deterministic

model departs from the white noise assumption.

This type of analysis provides the basis for determining the signi-

ficance of pole-zero pairs. The significance of cancelling nearly equal

poles and zeros or modeling their effect with a sinusoid can be deter-

mined through an analysis of variance.

This chapter has illustrated numerically the procedure for identi-

fying equivalent deterministic and stochastic models for time series

with a periodic component. We have shown that the significance of

departures from exact equivalence for approximately equivalent deter-

ministic and stochastic models can be evaluated by comparing the fre-

quency decomposition of variance implied by each model.
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6. SUMMARY AND CONCLUSIONS

Summary

The concept of equivalency between a second order stationary sto-

chastic and deterministic representation of a periodic component in a

time series was developed in Chapter 4. A deterministic and stochastic

model are equivalent when they represent the same frequency decomposi-

tion of variance. Equivalence of the spectral representations requires

integration of the continuous form of the stochastic spectrum over each

of the -N intervals of length 27 to make the stochastic spectrum directly
2 N

comparable to the discrete spectrum of the deterministic representation.

A procedure for finding an equivalent stochastic representation for

a given deterministic representation that uses the graphical interpreta-

tion of the stochastic spectrum and the analytic expression for G to

J 
0j
to

calculate the integral of the stochastic spectrum was also developed in

Chapter 4 and illustrated in Chapter 5. This procedure consists of: 1)

choosing the poles and zeros of the stochastic model such that the spec-

trum has a peak at the same frequency as the deterministic sinusoid and

such that the total variance of the output of the stochastic process is

equal to the total variance of the sinusoid plus white noise determinis-

tic model; and 2) comparing the frequency decomposition of the variance

of the stochastic model to that of the deterministic model for each

discrete frequency interval.
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Important implications of these results are as follows. The iden-

tification of mathematical equivalence, when it exists, allows the time

series analyst to choose between potentially equivalent deterministic

and stochastic representations. Both representations reflect the same

information contained in the available realization of {x } and aret

mathematically equivalent second order stationary models. Hence, there

are no grounds, based on {x t}, to argue for one representation versus

its equivalent alternative. The choice must be based on considerations

of the process itself (e.g., physical arguments) or on other information

beyond that contained in {xt I. This result provides a basis for identi-

fying the similarities and differences among alternative time series

models.

The concept of equivalence can also be used to evaluate models

whose spectral representations, while not exactly equivalent, are

approximately equivalent. Although any real valued sinusoid can be

represented by an equivalent stochastic model, not all stochastic

processes can be represented exactly by a single real valued sinusoid.

The significance of the departure from exact equivalence can be

evaluated by comparing the frequency decomposition of variance implied

by each model.

These two concepts provide a way to identify deterministic

sinusoids by using stochastic modeling techniques. This may prove par-

ticularly useful for time series which unexpectedly contain sinusoidal

behavior or which contain sinusoids of unknown frequency. Conversely,
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deterministic structure can be identified using Fourier spectral tech-

niques and the results transformed to their stochastic equivalent.

This analysis also provides some insight into the role of pole-zero

pairs in stochastic models. For example, it has been shown that pole-

zero pairs near the unit circle are not necessarily indicative of over-

fitting, i.e., they do not necessarily cancel. These results provide

criteria for determining when pole-zero pairs can be cancelled based on

the variance associated with the pole-zero pair. If the associated

variance is large, then the poles and zeros cannot be cancelled. If the

variance is small, then the poles and zeros may be cancelled depending

on the purpose of the model -- characterization, forecasting, or control

-- and the understanding of the underlying process dynamics.

This insight looks promising for explaining several empirical

observations, such as: the general requirement for a seasonal moving

average term when seasonal differencing is used; the ability of AR(2)

models to represent a sinusoidal determinism; and the ability of

ARMA(2,1), ARMA(4,3),...,ARMA(2n,2n-1) models with pole-zero pairs near

the unit circle to represent a sum of sinusoids plus a stochastic-only

random element.

Conclusions

The following conclusions are drawn from this research:
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1. Under the assumption of integer multiples of periodicity, the

spectrum of a deterministic time series was shown, Chapter 2, to be par-

ticularly simple.

2. The graphical interpretation, presented in Chapter 3, of the

poles and zeros in the unit circle of the complex plane provides useful

insight to the stochastic spectrum.

3. The analytic expression for G , derived in Appendix C, is

helpful for identifying equivalent deterministic and stochastic models.

4. Spectrally equivalent deterministic and stochastic models can

be identified through the identification procedure developed in Chapter

4 and illustrated in Chapter 5.

5. This research has identified the need for future work as fol-

lows:

i. The equivalency of the spectral representations in the fre-

quency domain should be transformed to the time domain and interpreted

in terms of the autocovariance function.

ii. The procedures for identifying an equivalent stochastic

representation for a given deterministic representation should be

extended to address a sum of sinusoids plus a stochastic only random

element, i.e.,

i!
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M
I Aj cos(wjt + woJ) + P(B)at *'(B)at (Eq. 6-1)
i-I

iii. The procedures advocated by the three most commonly used time

series modeling approaches -- Box-Jenkins, DDS, and deterministic plus

stochastic -- should be examined and interpreted in the light of the

above extensions.
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APPENDIX A. SPECTRUM OF A SINUSOID

If

d t = A cos (w0t + w ) t = 1,2,..., N (Eq. A-i)

then, by definition, the spectrum, fd(6) is
d

f 10 N dte i~t 12 0< <
t=l

-- - cos t)2 + (1 d 2

t~l t=l

A2  N 2

rN I COS (WCt + W ) Cos t) 2

t=lo

N2
cos (wt + ) sin (Eq. A-2)

t=1

The terms in each summation can be rewritten as

cos (Wt + Wo) cos at [cos((W + O)t + o)0 2L0

+ cos ((W- )t + W)] (Eq. A-3)

and

cos (Ct + C%) sin at = - [sin "(u + 6)t + Wo)

- sin (( - e)t + ) (Eq. A-4)0E.A4
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Also

N sncNcos (c t+i) * co ( N +. l)+8 ] sin7
sin+ (Eq. A-5)t-I 2sin -a

2

which can be shown as follows

+ el(at + 0) + e-i(at +8)

t-l

I ei 8  N eit +1 e-i iat
t=l t-i

1 [eO e a U- e bk~x + -i8 e-ia (i - e-iNC)
- Iei ei(l -ei ) +(e-i

2 Lle a l -eia1I- ei i e

1 e iNa/2 (e- iNa/ iN2 -/2

L ia/2 (e-ia/2-eia/2)

+ -ia+8) e-iN'/2 (e iN/2-e- iNa/2) (Eq. A-6)
e e -im/2 (eia/12_e-iL/ 2)

Dividing both numerator and denominator by 2i and collecting terms

yields

2 & 2i27 +e- 2 +8) 2 (Eq. A-7)
2 sin- sin2

2 2.. . .. .. . . .. .. .-
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Finally

_ _iNa

coB (C+0) - Cos ( N + ) sin 2 (Eq. A-8)
2 s

A similar derivation gives

N nNa

sin Ott +B) -sin 2 + +)sin (Eq. A-9)t-l 1 sin-

2

Now the first term in Eq. A-2 though the use of Eq. A-3 and A-5

can be rewritten as

N A N
A cos (t+W 0o) Cos et - Cos [ o

t 2 t,

AN+ I Cos (L-6) t+W°
2 1

N(W+B)
A Cos oN+l) ") sin 2

2O2 sin-4

2

A (N+l)(w-6) s 2 (Eq. A-10)+2 2o +% sin w-_e
2

Similarly the second term is

NN
A cos (wt+w ) sinf- A i (wj4-) t+oi

0- 20-

AI sin watW
2 1

.. . . . . . .. .0.. . .. .1. . .
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Ai F(N+) (")+ wo sin 2[ s si2
2 L2 ~ j sin u--

2

A [ N+I. - sin
sin + cwI+2 (Eq. A-I)

2 sin 2

Let

c+ m Cos [(N+1)(w+) + w S+ - sin + w

c- m Cos 2(N+1)(-) + 03 s - sin I)(O) +

si 2011 20
N(W~)

k+ sin 2 (Eq. A-12)
sin -

2

N(W-e)

k sin 2
sin W-

2

Now Eq. A-2 can be written, from Eq. A-10, 11, and 12, as

(6 - 4 2 (c+k+ + c_k_) 2 + (s+k+ - s_k)2

22
; (c++ s)k+2(c+c - +s_)k~k_ + (c2 +a)k

but

2 2C+ + S+ i(Eq. A-14)
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c2 +s 2 (Eq. A-15)

and
~ LNi-i wO (N+I-) ( ~-O) +C

C+c_- s+s_ = Cos (NI2(+8)+ + 2 + Wo i

2 0 20

= Cos [(N+1)QJ + 2 w %] (Eq. A-16)

Thus Eq. A-13 can be written as

sin 2 FN1f-( + 2 cos (N+I)co+ 2 wo

fd() ON sin2 w+)

2

sin (w+8 sn4wi 2 N(WC-)
2 sin 2 sin 2 - (Eq. A-17)

s 2 sin2

2
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APPENDIX B: SPECTRUM OF WHITE NOISE

If at is an independently and identically distributed random variable

of mean 0 and variance a 2 then the spectrum of a denoted by f (8)a t a

is

a 2

a -fa(6) --A 0< e < 7 (Eq. B-1)

Proof

N t2
fa ( 1)  1 1 iet

a t-i t

N t( a iet) N a t

ataketo(t-k) (Eq. B-2)
tk

let Z = t-k, therefore k - t-L and

f (0) - - I ( I atat_,) ei09 (Eq. B-3)
it

but by hypothesis

I atat_ -0 z 0 (Eq. B-4)

Hence N
ffa() = N L aI

a Tr t-1

2
f - a (Eq. B-5)
ai r
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APPENDIX C: GREEN'S FUNCTION

Green's function is defined such that

cc

xt aJ10 G at-i (Eq. C-i)

Therefore an ARMA(2,2) model can be written as

(B)Xt = E(B)a t

(14l1B-i2B2 )Xt = (1- 1 B-0 2 B 2)a t

(1-0 1 B-4 2 B 2)(I+GIB+G2 B 2+...)at M (1-elB-2B2 )a t  (Eq. C-2)

Equating like powers of B gives an implicit (recursive) form of

Green's function.

Go 1 G G =10 0

G2 - :1GI - 02 -'2 G 2 - 01G, + 02 '2

G3 - 0 : G3 ' 01G2 + 02G1

C- 1G - u2GJ-2  0 : j =1Gj_ + 2GJ- 2  (Eq. C-3)

for j - 3,4,...
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Green's function can also be written in an explicit (analytic) form

by using the implicit form as the initial conditions and the general

solution to a second order difference equation. Assuming distinct roots

G - J + g J - 1,2,... (Eq. C-4)

Therefore

G1  glX1 + g2X2  1 - 1 (Eq. C-5)

1 1 + X2 1

and
G 9X2 A2 2 +

2 + 2 - 1e+ 1 2 - e2 (Eq. C-6)

(X 1 + X2)2- (X 1 + X2)e1 + (- 1 " 2 ) ' 2

From Eq. C-5

, i- 61 - glg2 - 1, 
(Eq. C-7)

Substituting Eq. C-7 into Eq. C-6 gives

2 1- e- g1 x1  2 2
91 1 + - X2 2 . 1 - lel + 2 - e2  (Eq. c-8)

91(X 22" X X 2 2 1 2 (Eq. C-9)
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2+ 2A A +X A-2xe -AO0 - xx -a Ax x 2 + x12 2 11 2 1 12 2 1 2 2 12
= l(l- A2)

g= x(X X (Eq. C-1O)
1 1 ( 1  - 2 )

Substituting Eq. C-1O into Eq. C-7 gives

x + -0 l(X 1 - 01) -

1 2 1 2 -Ii + 12 _ 1 x x

A 1 2
A2

(xI + x 2 ) 2 - 1 )-0 1 (A 2 - 11 ) + Il(X1 - - 02

x 2 (k2 - x )

+ X2 x2 x1x -8 12+1 + +2 x1 - 2-12 2 1 12 12 11 1 11 2

A 2  -A 1)

X2(x 2 - -0 2
92 (Eq. C-11)

2(2 - A1)

Now Go must equal one so consider

1(1- 81) - 02 A2(X2 - 1)- 02
91 + g2 +

I -1 2 ) x2 (X2 - A1 )
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X 2 X X X 2 8 1 - XA 2 + A 1A 2 0 + X 0
1 2 1 21 2 2 1 2 1 21 1 2

X1X2 (X1 - A2)

AI X 2 + 02

12

g1 
+ g2  1 - 2 (Eq. C-12)

In summary, then, the explicit form of Green's function is

G 2820O 2 + 81 + 82 1

G. g X+ j 1,2.... (Eq. C-13)

where

Xl~l 1 - 01) - 02

X  - x2 )

and

X2(X 2 - 01) - 02
2 (X2- X1)

The explicit form of Green's function can also be written in :j

trigonometric form if X and v are complex conjugates.

ii' -
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Let

1 = re i p

A2 = re- (Eq. C-14)

icy
v I = se

- iO
V = Se2

Then

AI(A I -0 1 ) - 82 2 (A2 0I ) - 2  •i
G. = - (re iP j +  2 - 1 2(re- iP)

J ~~ ~ ~ 2 iIjp 1)1(A 1

r3 - el- 1 e i p -  x 0 e i JP

I1- x 22 1 X2

r Al- -1 02) (cos jp + i sin jp)xi - X2  x1-81

X- 1 02 ) [Th(cosjp - i snjl' 1

= 2  21 - 2  CO 2j

+ ixl + x2- 201 2 2 )  siJp

1 2. 1 x 1,,I
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=xI 2  2  cOsBj+ i 1 2 sinpj
1 2 2

= e2 '- 20+ 12)
= rj  (1-2 ) cospj + 2 sinpi (Eq. C-15)

Let

€1 - 281 + ¢ 9

2

B -12 (Eq. C-16)

(0 + 4 €2 )

Thus

=. r - cospj + B sinpj (Eq. -17)

Define

R 2 ) 2 +B 2

and (Eq. C-18)

tan- 
B 6

per Figure c-I.
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#I2

I ,62+ 02)
02

Figure C-1. Illustration of

p
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Therefore,

G. = r R [cos a cospi + sin sind (Eq. C-19)

Finally

G. = r R cos (pj - j = 1,2,... (Eq. C-20)

where

A = re
ip

2 f+

e.2 = "- 2 1 +  0-
- ~ 1 2

2

= tan-  [ B ]

We now derive an expression for

j=O

1 2
--. _- : m ~ ~ m mm m " - 0 G 11 l 1 

Il
IIII 1' ' . . . = . . "-. .
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00 2012

S=o0j=l

o r 2 j cos 2 (pj- )
j=l

2

= 1+- R 2 r2j ei(Pj + 8) e-i(pJ - r)j
j=Z 2 2

= 1 + - r r 2 r

(Eq. c-21)
Consider the f irst term of Eq. C-21

r2J e2p e ) -i2 ')eiP (Eq. C-22)
J=l 1 r ei -

Similarly the third term is

O 2 -12(pj - a) i2a r 2e- 2i28 r2 -e
- e 2 12p (Eq. C-23)r2J e-2(pJ 6 =1er ei

j=l - r e

Next, the second term is

2 2
2j 2 (Eq. C-24)

J-1 l- r
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Thus, Eq. C-21 can be written as

I~ Gj [e- e-2e
j0L 1-r e l r 1-r

R2r2  ei(2p-2 2 -ir e 1+e-i(
2p -2 r 2 e M

4 L I r"2(e 1 i2p + e-i2p + r4

0G = 1 + r 2 c + (Eq. C-25)=OL 1+ r 4 -2r 2 cos 2p 1 -r 2
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